

TensorState’s Documentation

Introduction

TensorState is a toolbox designed to analyze the way neural networks
process information.

Both Tensorflow and PyTorch are supported, but complex networks may prove
problematic for some of the network functions (such as automatically building an
efficiency model).

For comments, suggestions, and bug reports, open an issue on
Github [https://github.com/Nicholas-Schaub/tensorstate/issues].

Table of Contents

	Installation
	Introduction

	Simple Installation

	Troubleshooting

	Install From Source

	Other Information

	List of Tutorials
	A Simple Tensorflow Tutorial

	A Simple PyTorch Tutorial

	Reference
	tensorstate.TensorState

	tensorstate.Layers

	tensorstate.States

	What is state space?
	An Abstract Explanation

Installation

Introduction

TensorState uses accelerated Cython code to capture neural layer state
information. This can create some issues when trying to install on architectures
do not include prepackaged wheels. Please read the appropriate section carefully
to make sure installation of the package is successful.

Most dependencies should be installed when using pip, however some may not
be installed.

Simple Installation

Precompiled wheels exist for Windows 10, Linux, and MacOS for Python versions
3.6 to 3.8. No special dependencies are required.

pip install TensorState

Troubleshooting

For Linux, there are manylinux wheels that should support most versions of
Linux (pip install TensorState). In some cases it may try to compile from
source (e.g. Alpine linux). When compiling, it is necessary to install numpy
and Cython prior to installation.

pip install numpy==1.19.2 Cython==3.0a1

pip install TensorState

Install From Source

If you want to install from source, clone the repo and change directories.

git clone https://github.com/Nicholas-Schaub/tensorstate

cd tensorstate

You must have a C++ compiler installed. For Windows, mingw will likely not work
but also has not been tested. Microsoft Visual Studio 2015 or later is needed.
For Linux, gcc must be installed.

Once compilers are installed, get the requirements.

pip install -r requirements.txt

Finally, install using either:

python setup.py install

or

pip install .

Since TensorState is designed to work with both PyTorch and Tensorflow,
neither of these packages are required for installation, but you will need to
install both to run all of the examples. See the PyTorch installation
instructions and tensorflow installation instructions to install each package.

Other Information

The compile code uses compiler intrinsics found in most CPUs created in 2015 or
later. As long as the CPU is haswell or later, there shoulnd’t be any issues.

Currently, there is no fallback for working on platforms that do not have a C++
compiler or are working on platforms other than x86 architectures such as ARM.
If there is interest, please open an issue on
Github [https://github.com/TensorState/issues].

 The TensorState package is a work in progress, but the following tutorials
demonstrate the current useful functionality of the package.

List of Tutorials

	A Simple Tensorflow Tutorial
	Introduction

	Build and Train LeNet-5

	Use TensorState to Evaluate LeNet-5

	Complete Example

	A Simple PyTorch Tutorial
	Introduction

	Build and Train LeNet-5

	Use TensorState to Evaluate LeNet-5

	Complete Example

A Simple Tensorflow Tutorial

Table of Contents

	Introduction

	Build and Train LeNet-5

	Get MNIST

	Create a LeNet-5 Model

	Train the LeNet-5 Model

	Use TensorState to Evaluate LeNet-5

	Complete Example

Introduction

The core ideas behind this package were originally described in our paper,
Assessing Intelligence in Artificial Neural Networks [https://arxiv.org/abs/2006.02909].

This package simplifies the capture of neural layers states, and provides some
utility functions to assist in analyzing the state space of neural layers.

In this tutorial, we are going to build a classic convolutional neural network,
LeNet-5. Then we are going to use TensorState to evaluate the network
architecture, getting the efficiency of each layer and calculating the
artificial intelligence quotient.

Build and Train LeNet-5

Get MNIST

To train this model, we need to get the MNIST data set. Fortunately, it comes
packaged with Keras in Tensorflow. The original data was 8-bit and a single
channel, so we need to add a channel axis and we are going to normalize the
image to have pixel values ranging from 0-1.

import os

Set the log level to hide some basic warning/info generated by Tensorflow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

Fix for cudnn error on RTX gpus
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

import tensorflow.keras as keras

Load the data
mnist = keras.datasets.mnist
(train_images,train_labels), (test_images,test_labels) = mnist.load_data()

Normalize the data
train_images = train_images/255
test_images = test_images/255

Add a channel axis
train_images = train_images[..., tf.newaxis]
test_images = test_images[..., tf.newaxis]

Create a LeNet-5 Model

The general structure of our LeNet-5 model will roughly follow the structure of
the original network described by
LeCun et al. [http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf]
However, we are going to make a few modifications to make it more modern
relative to the original architecture, such as addition of l2 weight
regularization, exponential linear units, and batch normalization. So, we start
off by setting the Tensorflow random seed (to make the results reproducible) and
set up the parameters of the convolutional layers.

import tensorflow as tf

Set the random seed for reproducibility
tf.random.set_seed(0)

Set the convolutional layer settings
reg = keras.regularizers.l2(0.0005)
kwargs = {'activation': 'elu',
 'kernel_initializer': 'he_normal',
 'kernel_regularizer': reg,
 'bias_regularizer': reg}

Next, we create the layers of the network. LeNet-5 has 2 convolutional layers
and 2 fully connected layers. We will use max pooling layers after each
convolutional layer, and we will add a batch normalization layer to all by the
last fully connected layer.

Build the layers
input_layer = keras.layers.Input(shape=(28,28,1), name='input')

Unit 1
conv_1 = keras.layers.Conv2D(20, 5, name='conv_1',**kwargs)(input_layer)
norm_1 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_1)
maxp_1 = keras.layers.MaxPool2D((2,2), name='maxp_1')(norm_1)

Unit 2
conv_2 = keras.layers.Conv2D(50, 5, name='conv_2', **kwargs)(maxp_1)
norm_2 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_2)
maxp_2 = keras.layers.MaxPool2D((2,2), name='maxp_2')(norm_2)

Fully Connected
conv_3 = keras.layers.Conv2D(100, 4, name='conv_3', **kwargs)(maxp_2)
norm_3 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_3)

Prediction
flatten = keras.layers.Flatten(name='flatten')(norm_3)
pred = keras.layers.Dense(10,name='pred')(flatten)

Create the Keras model
model = keras.Model(
 inputs=input_layer,
 outputs=pred
)

Train the LeNet-5 Model

Next we train the LeNet-5 model, and stopping as soon as the validation accuracy
stops increasing.

Compile for training
model.compile(
 optimizer=keras.optimizers.SGD(learning_rate=0.001,momentum=0.9,nesterov=True),
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True,name='loss'),
 metrics=['accuracy']
)

Stop the model once the validation accuracy stops going down
earlystop_callback = tf.keras.callbacks.EarlyStopping(
 monitor='val_accuracy',
 mode='max',
 patience=5,
 restore_best_weights=True
)

Train the model
model.fit(
 train_images, train_labels, epochs=200,
 validation_data=(test_images, test_labels),
 batch_size=200,
 callbacks=[earlystop_callback],
 verbose=1
)

Use TensorState to Evaluate LeNet-5

To calculate neural layer efficiency, we need to capture the various states each
layer takes on as the network processes data. This functionality is built into
the StateCapture class, which is a Tensorflow layer that can be inserted
into the model to automate the capturing of information passing through the
network. The StateCapture layer acts like a probe that can be placed
anywhere in the network: it records the information without modifying it, and
passes it on to subsequent layers.

While StateCapture layers can be placed manually, there is a convenience
function that can take an existing neural network and return a new network with
StateCapture layers inserted at the designated areas. For example, we can
attach a StateCapture layer to all convolutional layers.

import TensorState as ts
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2D'],method='after')

In the above code, we feed the trained LeNet-5 model into the function,
designate we want to attach StateCapture layers to all 2D convolutional
layers, and we want to capture the states after the layer. We could also
capture the inputs going into and out of the layer by using method='both'.
For more information on the build_efficiency_model method and additional
settings, please see the TensorState reference.

Now that the efficiency_model has been created, the StateCapture layers
will collect all states of the network as images are fed to the network. Thus,
to generate all possible states the network contains for the test data, we only
need to predict the classes for the test data. Then we can look at how many
states were collected for each layer.

predictions = efficiency_model.predict(train_images,batch_size=200)

for layer in efficiency_model.efficiency_layers:
 print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Note how efficiency_model has the efficiency layers stored in the
efficiency_layers attribute of the model. The output of the above code
should look something like this:

Layer conv_1_states number of states: 5760000
Layer conv_2_states number of states: 640000
Layer conv_3_states number of states: 10000

Since there are 10,000 images in the training data set, it is expected that the
fully connected layer (conv_3_states) has 10,000 states recorded, since
exactly one state will be recorded per image. The other layers are
convolutional, generating multiple states per image. The number of states can be
checked by determining the number of locations the convolutional operator is
applied per image then multiplying by 10,000. For example, in a 28x28 image with
a 5x5 convolutional operation performed on it, the dimensions of the output
would be 24x24. Thus, the number of states for all 10,000 images would be
24*24*10,000=5,760,000 states, which is the number of states observed by
conv_1_states.

Note

The state_count is the raw number of states observed, and there are
likely states that occur multiple times.

Now that the states of each layer have been captured, let’s analyze the state
space using the efficiency metric originally described by
Schaub et al [https://arxiv.org/abs/2006.02909]. The efficiency metric
calculates the entropy of the state space and divides by the number of neurons
in the layer, giving an efficiency value in the range 0.00-1.00.

for layer in efficiency_model.efficiency_layers:
 layer_efficiency = layer.efficiency()
 print('Layer {} efficiency: {:.1f}%'.format(layer.name,100*layer_efficiency))

Next, we can calculate the artificial intelligence quotient (aIQ). Since things
like neural network efficiency and aIQ are metrics calculated over the entire
network, the StateCapture layer does not have built-in methods to calculate
these values.

beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.argmax(predictions,axis=1)==train_labels)/train_labels.size
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy,beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

Complete Example

import os

Set the log level to hide some basic warning/info generated by Tensorflow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

Fix for cudnn error on RTX gpus
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

import tensorflow as tf
import tensorflow.keras as keras
import TensorState as ts
import numpy as np
import time

""" Load MNIST and transform it """
Load the data
mnist = keras.datasets.mnist
(train_images,train_labels), (test_images,test_labels) = mnist.load_data()

Normalize the data
train_images = train_images/255
test_images = test_images/255

Add a channel axis
train_images = train_images[..., tf.newaxis]
test_images = test_images[..., tf.newaxis]

""" Create a LeNet-5 model """
Set the random seed for reproducibility
tf.random.set_seed(0)

Set the convolutional layer settings
reg = keras.regularizers.l2(0.0005)
kwargs = {'activation': 'elu',
 'kernel_initializer': 'he_normal',
 'kernel_regularizer': reg,
 'bias_regularizer': reg}

Build the layers
input_layer = keras.layers.Input(shape=(28,28,1), name='input')

Unit 1
conv_1 = keras.layers.Conv2D(20, 5, name='conv_1',**kwargs)(input_layer)
norm_1 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_1)
maxp_1 = keras.layers.MaxPool2D((2,2), name='maxp_1')(norm_1)

Unit 2
conv_2 = keras.layers.Conv2D(50, 5, name='conv_2', **kwargs)(maxp_1)
norm_2 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_2)
maxp_2 = keras.layers.MaxPool2D((2,2), name='maxp_2')(norm_2)

Fully Connected
conv_3 = keras.layers.Conv2D(100, 4, name='conv_3', **kwargs)(maxp_2)
norm_3 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_3)

Prediction
flatten = keras.layers.Flatten(name='flatten')(norm_3)
pred = keras.layers.Dense(10,name='pred')(flatten)

Create the Keras model
model = keras.Model(
 inputs=input_layer,
 outputs=pred
)

print(model.summary())

""" Train the model """
Compile for training
model.compile(
 optimizer=keras.optimizers.SGD(learning_rate=0.001,momentum=0.9,nesterov=True),
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True,name='loss'),
 metrics=['accuracy']
)

Stop the model once the validation accuracy stops going down
earlystop_callback = tf.keras.callbacks.EarlyStopping(
 monitor='val_accuracy',
 mode='max',
 patience=5,
 restore_best_weights=True
)

Train the model
model.fit(
 train_images, train_labels, epochs=200,
 validation_data=(test_images, test_labels),
 batch_size=200,
 callbacks=[earlystop_callback],
 verbose=1
)

""" Evaluate model efficiency """
Attach StateCapture layers to the model
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2D'],method='after')

Collect the states for each layer
print()
print('Running model predictions to capture states...')
start = time.time()
predictions = efficiency_model.predict(test_images,batch_size=200)
print('Finished in {:.3f}s!'.format(time.time() - start))

Count the number of states in each layer
print()
print('Getting the number of states in each layer...')
for layer in efficiency_model.efficiency_layers:
 print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Calculate each layers efficiency
print()
print('Evaluating efficiency of each layer...')
for layer in efficiency_model.efficiency_layers:
 start = time.time()
 print('Layer {} efficiency: {:.1f}% ({:.3f}s)'.format(layer.name,100*layer.efficiency(),time.time() - start))

Calculate the aIQ
beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.argmax(predictions,axis=1)==test_labels)/test_labels.size
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy,beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

A Simple PyTorch Tutorial

Table of Contents

	Introduction

	Build and Train LeNet-5

	Get MNIST

	Create a LeNet-5 Model

	Train the LeNet-5 Model

	Use TensorState to Evaluate LeNet-5

	Complete Example

Introduction

The core ideas behind this package were originally described in our paper,
Assessing Intelligence in Artificial Neural Networks [https://arxiv.org/abs/2006.02909].

This package simplifies the capture of neural layers states, and provides some
utility functions to assist in analyzing the state space of neural layers.

In this tutorial, we are going to build a classic convolutional neural network,
LeNet-5. Then we are going to use TensorState to evaluate the network
architecture, getting the efficiency of each layer and calculating the
artificial intelligence quotient.

Build and Train LeNet-5

Get MNIST

To train this model, we need to get the MNIST data set. The data comes already
rescaled to floats ranging between 0-1, so no rescaling is required.

from pathlib import Path
import requests, pickle, gzip
import torch
from torch.utils.data import TensorDataset, DataLoader

Set up the directories
DATA_PATH = Path("data")
PATH = DATA_PATH/"mnist"
PATH.mkdir(parents=True, exist_ok=True)

Download the data if it doesn't exist
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():
 content = requests.get(URL + FILENAME).content
 (PATH / FILENAME).open("wb").write(content)

Load the data
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
 ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

 x_train, y_train, x_valid, y_valid = map(
 torch.tensor, (x_train, y_train, x_valid, y_valid)
)

 train_ds = TensorDataset(x_train,y_train)
 train_dl = DataLoader(train_ds,batch_size=200,shuffle=True)
 valid_ds = TensorDataset(x_valid,y_valid)
 valid_dl = DataLoader(valid_ds,batch_size=200)

Create a LeNet-5 Model

The general structure of our LeNet-5 model will roughly follow the structure of
the original network described by
LeCun et al. [http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf]
However, we are going to make a few modifications to make it more modern
relative to the original architecture, such as addition of l2 weight
regularization, exponential linear units, and batch normalization. So, we start
off by setting the Tensorflow random seed (to make the results reproducible).
Then we build the LeNet-5 class to define out network.

LeNet-5 has 2 convolutional layers and 2 fully connected layers. We will use max
pooling layers after each convolutional layer, and we will add a batch
normalization layer to all by the last fully connected layer.

import torch.nn as nn

Set the random seed for reproducibility
torch.manual_seed(0)

Build the layers
class LeNet5(nn.Module):

 def __init__(self):
 super().__init__()

 # Unit 1
 self.conv_1 = nn.Conv2d(1, 20, kernel_size=5, stride=1)
 torch.nn.init.kaiming_normal_(self.conv_1.weight)
 torch.nn.init.zeros_(self.conv_1.bias)
 self.elu_1 = nn.ELU()
 self.norm_1 = nn.BatchNorm2d(20,eps=0.00001,momentum=0.9)
 self.maxp_1 = nn.MaxPool2d(2,stride=2)

 # Unit 2
 self.conv_2 = nn.Conv2d(20, 50, kernel_size=5, stride=1)
 torch.nn.init.kaiming_normal_(self.conv_2.weight)
 torch.nn.init.zeros_(self.conv_2.bias)
 self.elu_2 = nn.ELU()
 self.norm_2 = nn.BatchNorm2d(50,eps=0.00001,momentum=0.9)
 self.maxp_2= nn.MaxPool2d(2,stride=2)

 # Fully Connected
 self.conv_3 = nn.Conv2d(50, 100, kernel_size=4, stride=1)
 torch.nn.init.kaiming_normal_(self.conv_3.weight)
 torch.nn.init.zeros_(self.conv_3.bias)
 self.elu_3 = nn.ELU()
 self.norm_3 = nn.BatchNorm2d(100,eps=0.00001,momentum=0.9)

 # Prediction
 self.flatten = nn.Flatten()
 self.pred = nn.Linear(100,10)
 torch.nn.init.kaiming_normal_(self.pred.weight)
 torch.nn.init.zeros_(self.pred.bias)

 def forward(self,data):
 x = data.view(-1, 1, 28, 28)
 x = self.conv_1(x)
 x = self.maxp_1(self.norm_1(self.elu_1(x)))
 x = self.conv_2(x)
 x = self.maxp_2(self.norm_2(self.elu_2(x)))
 x = self.conv_3(x)
 x = self.norm_3(self.elu_3(x))
 x = self.pred(self.flatten(x))
 return x.view(-1, x.size(1))

Set the device to run the model on (gpu if available, cpu otherwise)
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

Create the Keras model
model = LeNet5().to(dev)

Train the LeNet-5 Model

First, set up the parameters used for training. This will be set up to run with
early stopping, similar to how Tensorflow has an early stopping callback. The
patience parameter determines how many epochs to let past after the highest
accuracy value is observed.

import torch.optim as optim

num_epochs = 200
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.001,momentum=0.9,
 weight_decay=0.0005,nesterov=True)
last_valid_accuracy = 0
val_count = 0
patience = 5

Next, create the function to process training and evaluation for all samples.

def epoch_func(x,y,train=False):
 predictions = model(x)
 num = len(x)
 accuracy = (torch.argmax(predictions,axis=1)==y).float().sum()/num
 loss = loss_func(predictions,y)

 if train:
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

 return loss,accuracy,num

Finally, run the training and evaluation loop.

import time

for epoch in range(num_epochs):
 start = time.time()
 model.train()
 losses, accuracies, nums = zip(
 *[epoch_func(xb.to(dev), yb.to(dev), True) for xb, yb in train_dl]
)
 train_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
 train_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

 model.eval()
 with torch.no_grad():
 losses, accuracies, nums = zip(
 *[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)
 valid_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
 valid_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

 print('Epoch {}/{} ({:.2f}s): TrainLoss={:.4f}, TrainAccuracy={:.2f}%, ValidLoss={:.4f}, ValidAccuracy={:.2f}%'.format(
 str(epoch+1).zfill(3),num_epochs,time.time()-start,
 train_loss,100*train_accuracy,valid_loss,100*valid_accuracy
))

 # Early stopping criteria
 if valid_accuracy > last_valid_accuracy:
 val_count = 0
 last_valid_accuracy = valid_accuracy
 else:
 val_count += 1

 if val_count >= patience:
 break

Use TensorState to Evaluate LeNet-5

To calculate neural layer efficiency, we need to capture the various states each
layer takes on as the network processes data. This functionality is built into
the StateCaptureHook class, which is a hook that can be called before or
after the designated layers to automate the capturing of information passing
through the network. The StateCaptureHook acts like a probe that can be
placed anywhere in the network: it records the information without modifying it,
and passes it on to subsequent layers.

While StateCaptureHook’s can be placed manually, there is a convenience
function that automatically adds hooks at the designated layers. For example, we
can attach a StateCaptureHook to all convolutional layers.

import TensorState as ts
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2d'],method='after')

In the above code, we feed the trained LeNet-5 model into the function,
designate we want to attach StateCaptureHook’s to all 2D convolutional
layers, and we want to capture the states after the layer. We could also
capture the inputs going into and out of the layer by using method='both'.
For more information on the build_efficiency_model method and additional
settings, please see the TensorState reference.

Now that the efficiency_model has been created, the StateCaptureHooks
will collect all states of the network as images are fed to the network. Thus,
to generate all possible states the network contains for the test data, we only
need to evaluate the test data. Then we can look at how many states were
collected for each layer.

model.eval()
with torch.no_grad():
 losses, accuracies, nums = zip(
 *[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)

for layer in efficiency_model.efficiency_layers:
 print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Note how efficiency_model has the efficiency layers stored in the
efficiency_layers attribute of the model. The output of the above code
should look something like this:

Layer conv_1_post_states number of states: 5760000
Layer conv_2_post_states number of states: 640000
Layer conv_3_post_states number of states: 10000

Since there are 10,000 images in the training data set, it is expected that the
fully connected layer (conv_3_post_states) has 10,000 states recorded, since
exactly one state will be recorded per image. The other layers are
convolutional, generating multiple states per image. The number of states can be
checked by determining the number of locations the convolutional operator is
applied per image then multiplying by 10,000. For example, in a 28x28 image with
a 5x5 convolutional operation performed on it, the dimensions of the output
would be 24x24. Thus, the number of states for all 10,000 images would be
24*24*10,000=5,760,000 states, which is the number of states observed by
conv_1_post_states.

Note

The state_count is the raw number of states observed, and there are
likely states that occur multiple times.

Now that the states of each layer have been captured, let’s analyze the state
space using the efficiency metric originally described by
Schaub et al [https://arxiv.org/abs/2006.02909]. The efficiency metric
calculates the entropy of the state space and divides by the number of neurons
in the layer, giving an efficiency value in the range 0.00-1.00.

for layer in efficiency_model.efficiency_layers:
 layer_efficiency = layer.efficiency()
 print('Layer {} efficiency: {:.1f}%'.format(layer.name,100*layer_efficiency))

Next, we can calculate the artificial intelligence quotient (aIQ). Since things
like neural network efficiency and aIQ are metrics calculated over the entire
network, the StateCaptureHook’s do not have built-in methods to calculate
these values.

beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy.cpu().item(),beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

Complete Example

import requests, pickle, gzip, time

from pathlib import Path
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
import numpy as np

import TensorState as ts

Set the device to run the model on (gpu if available, cpu otherwise)
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

""" Load MNIST and transform it """
Set up the directories
DATA_PATH = Path("data")
PATH = DATA_PATH/"mnist"
PATH.mkdir(parents=True, exist_ok=True)

Download the data if it doesn't exist
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():
 content = requests.get(URL + FILENAME).content
 (PATH / FILENAME).open("wb").write(content)

Load the data
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:
 ((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

 x_train, y_train, x_valid, y_valid = map(
 torch.tensor, (x_train, y_train, x_valid, y_valid)
)

 train_ds = TensorDataset(x_train,y_train)
 train_dl = DataLoader(train_ds,batch_size=200,shuffle=True)
 valid_ds = TensorDataset(x_valid,y_valid)
 valid_dl = DataLoader(valid_ds,batch_size=200)

""" Create a LeNet-5 model """
Set the random seed for reproducibility
torch.manual_seed(0)

Build the layers
class LeNet5(nn.Module):

 def __init__(self):
 super().__init__()

 # Unit 1
 self.conv_1 = nn.Conv2d(1, 20, kernel_size=5, stride=1)
 torch.nn.init.kaiming_normal_(self.conv_1.weight)
 torch.nn.init.zeros_(self.conv_1.bias)
 self.elu_1 = nn.ELU()
 self.norm_1 = nn.BatchNorm2d(20,eps=0.00001,momentum=0.9)
 self.maxp_1 = nn.MaxPool2d(2,stride=2)

 # Unit 2
 self.conv_2 = nn.Conv2d(20, 50, kernel_size=5, stride=1)
 torch.nn.init.kaiming_normal_(self.conv_2.weight)
 torch.nn.init.zeros_(self.conv_2.bias)
 self.elu_2 = nn.ELU()
 self.norm_2 = nn.BatchNorm2d(50,eps=0.00001,momentum=0.9)
 self.maxp_2= nn.MaxPool2d(2,stride=2)

 # Fully Connected
 self.conv_3 = nn.Conv2d(50, 100, kernel_size=4, stride=1)
 torch.nn.init.kaiming_normal_(self.conv_3.weight)
 torch.nn.init.zeros_(self.conv_3.bias)
 self.elu_3 = nn.ELU()
 self.norm_3 = nn.BatchNorm2d(100,eps=0.00001,momentum=0.9)

 # Prediction
 self.flatten = nn.Flatten()
 self.pred = nn.Linear(100,10)
 torch.nn.init.kaiming_normal_(self.pred.weight)
 torch.nn.init.zeros_(self.pred.bias)

 def forward(self,data):
 x = data.view(-1, 1, 28, 28)
 x = self.conv_1(x)
 x = self.maxp_1(self.norm_1(self.elu_1(x)))
 x = self.conv_2(x)
 x = self.maxp_2(self.norm_2(self.elu_2(x)))
 x = self.conv_3(x)
 x = self.norm_3(self.elu_3(x))
 x = self.pred(self.flatten(x))
 return x.view(-1, x.size(1))

Create the Keras model
model = LeNet5().to(dev)

""" Train the model """
num_epochs = 200
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.001,momentum=0.9,
 weight_decay=0.0005,nesterov=True)
last_valid_accuracy = 0
val_count = 0
patience = 5

def epoch_func(x,y,train=False):
 predictions = model(x)
 num = len(x)
 accuracy = (torch.argmax(predictions,axis=1)==y).float().sum()/num
 loss = loss_func(predictions,y)

 if train:
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

 return loss,accuracy,num

for epoch in range(num_epochs):
 start = time.time()
 model.train()
 losses, accuracies, nums = zip(
 *[epoch_func(xb.to(dev), yb.to(dev), True) for xb, yb in train_dl]
)
 train_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
 train_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

 model.eval()
 with torch.no_grad():
 losses, accuracies, nums = zip(
 *[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)
 valid_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
 valid_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

 print('Epoch {}/{} ({:.2f}s): TrainLoss={:.4f}, TrainAccuracy={:.2f}%, ValidLoss={:.4f}, ValidAccuracy={:.2f}%'.format(
 str(epoch+1).zfill(3),num_epochs,time.time()-start,
 train_loss,100*train_accuracy,valid_loss,100*valid_accuracy
))

 # Early stopping criteria
 if valid_accuracy > last_valid_accuracy:
 val_count = 0
 last_valid_accuracy = valid_accuracy
 else:
 val_count += 1

 if val_count >= patience:
 break

""" Evaluate model efficiency """
Attach StateCapture layers to the model
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2d'],method='after')

Collect the states for each layer
print()
print('Running model predictions to capture states...')
start = time.time()
model.eval()
with torch.no_grad():
 losses, accuracies, nums = zip(
 *[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)
print('Finished in {:.3f}s!'.format(time.time() - start))

Count the number of states in each layer
print()
print('Getting the number of states in each layer...')
for layer in efficiency_model.efficiency_layers:
 print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Calculate each layers efficiency
print()
print('Evaluating efficiency of each layer...')
for layer in efficiency_model.efficiency_layers:
 start = time.time()
 print('Layer {} efficiency: {:.1f}% ({:.3f}s)'.format(layer.name,100*layer.efficiency(),time.time() - start))

Calculate the aIQ
beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy.cpu().item(),beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

Reference

	tensorstate.TensorState

	tensorstate.Layers

	tensorstate.States

tensorstate.TensorState

The TensorState module contains many of the core, high level functions that
have been developed through state space research.

	
aIQ(net_efficiency, accuracy, weight)

	Calculate the artificial intelligence quotient

The artificial intelligence quotient (aIQ) is a simple metric to report a
balance of neural network efficiency and task performance. Although not
required, it is assumed that the accuracy argument is a float ranging from
0.0-1.0, with 1.0 meaning more accurate.

aIQ = (net_efficiency * accuracy ** weight) ** (1/(weight+1))

The weight argument is an integer, with higher values giving more weight to
the accuracy of the model.

	Parameters

	
	net_efficiency ([float]) – A float ranging from 0.0-1.0

	accuracy ([float]) – A float ranging from 0.0-1.0

	weight ([int]) – An integer with value >=1

	Raises

	ValueError – Raised if weight <= 0

	Returns

	The artificial intelligence quotient

	Return type

	[float]

	
build_efficiency_model(model, attach_to, exclude=[], method='after', storage_path=None)

	Attach state capture methods to a neural network

This method takes an existing neural network model and attaches either
layers or hooks to the model to capture the states of neural network layers.

For Tensorflow, only keras.Model networks can serve as inputs to this
function. When a Tensorflow model is fed into this function, a new network
is returned where StateCapture layers are inserted into the network at the
designated locations.

For PyTorch, a neural network that implements the Module class will have
hooks added to the layers. A new network is not generated, but for
consistency the model is returned from this function.

	Parameters

	
	model ([keras.Model, torch.nn.Module]) – A Keras model

	attach_to (list, optional) – List of strings indicating the types of
layers to attach to. Names of layers can also be specified
to attach StateCapture to specific layers

	exclude (list, optional) – List of strings indicating the names of layers
to not attach StateCapture layers to. This will override the
attach_to keyword, so that a Conv2D layer with the name specified
by exclude will not have a StateCapture layer attached to it.
Defaults to [].

	method (str, optional) – The location to attach the StateCapture layer
to. Must be one of [‘before’,’after’,’both’].
Defaults to ‘after’.

	storage_path ([str, pathlib.Path], optional) – Path on disk to store
states in zarr format. If None, states are stored in memory.
Defaults to None.

	Returns

	A model of the same type as the input model

	Return type

	model

	
entropy(counts, alpha=1)

	Calculate the Renyi entropy

The Renyi entropy is a general definition of entropy that encompasses
Shannon’s entropy, Hartley (maximum) entropy, and min-entropy. It is defined
as:

(1-alpha)**-1 * log2(sum(p**alpha))

By default, this method sets alpha=1, which is Shannon’s entropy.

	Parameters

	
	counts (numpy.ndarray) – Array of counts representing number of times a
state is observed.

	alpha ([int,float], optional) – Entropy order. Defaults to 1.

	Returns

	The entropy of the count data.

	Return type

	[float]

	
network_efficiency(efficiencies)

	Calculate the network efficiency

This method calculates the neural network efficiency, defined as the
geometric mean of the efficiency values calculated for the network.

	Parameters

	efficiencies ([list,keras.Model,torch.nn.Module]) – A list of efficiency
values (floats) or a keras.Model

	Returns

	The network efficiency

	Return type

	[float]

	
reset_efficiency_model(model)

	Reset all efficiency layers/hooks in a model

This method resets all efficiency layers or hooks in a model, setting the
state_count=0. This is useful for repeated evaluation of a model
during a single session.

	Parameters

	model ([keras.Model, torch.nn.Module]) – Model to reset

tensorstate.Layers

The Layers module contains classes that interact with neural network layers.

	
class AbstractStateCapture(name, disk_path=None, **kwargs)

	Bases: abc.ABC

Base class for capturing state space information in a neural network.

This class implements the infrastructure used to capture, quantize, and
process state space information. For Tensorflow, a subclass is constructed
to inherit these methods as a layer to be inserted into the network. For
PyTorch, a subclass is constructed to implement these methods as layer
hooks.

This class captures state information and quantizes layer outputs as firing
or not firing based on whether the values are >0 or <=0 respectively.
Although this layer is intended to be attached before or after a neural
layer, this can actually be attached to any layer type. After recording the
firing state of all neurons, the original input is returned unaltered. Thus,
this layer can be thought of as a “probe”, since it does not add or subtract
from the function of a network.

Layer states are stored in a zarr array, which permits compressed storage of
data in memory or on disk. Only blosc compression is used to ensure fast
compression/decompression speeds. By default, data is stored in memory, but
data can be stored on disk to reduce memory consumption by using the
disk_path keyword.

NOTE: This layer currently only works within Tensorflow Keras models and
PyTorch models.

	
counts()

	Layer state counts

This method returns a numpy.array of integers, where each integer is the
number of times a state is observed. The identity of the states can be
obtained by calling the state_ids method.

NOTE: The list only contains counts for observed states, so all values
will be >0

	Returns

	Counts of stat occurences

	Return type

	[list of int]

	
efficiency(alpha1=1, alpha2=None)

	Calculate the efficiency of the layer

This method returns the efficiency of the layer. Originally, the
efficiency was defined as the ratio of Shannon’s entropy to the
theoretical maximum entropy based on the number of neurons in the layer.
This method with no inputs will return that value. However, this method
will also now permit defining the alpha value for the Renyi entropy, so
that the efficiency will be calculated as the Renyi entropy of order
alpha1 divided by the maximum theoretical entropy.

	Parameters

	
	alpha1 ([float, int], optional) – Order of Renyi entropy in numerator

	alpha2 ([float, int, None], optional) – Order of Renyi entropy in
denominator

	Returns

	The efficiency of the layer

	Return type

	[float]

	
entropy(alpha=1)

	Calculate the entropy of the layer

Calculate the entropy from the observed states. The alpha value is the
order of entropy calculated using the formula for Renyi entropy. When
alpha=1, this returns Shannon’s entropy.

	Parameters

	alpha (int, None) – Order of entropy to calculate. If None, then
use max_entropy()

	Returns

	The entropy of the layer

	Return type

	[float]

	
max_entropy()

	Theoretical maximum entropy for the layer

The maximum entropy for the layer is equal to the number of neurons in
the layer. This is different than the maximum entropy value that would
be returned from the TensorState.entropy method with alpha=0,
which is a count of the observed states.

	Returns

	Theoretical maximum entropy value

	Return type

	[float]

	
raw_states

	Raw state data as stored in memory, bit compressed

	
reset_states(input_shape=None)

	Initialize the state space

This method initializes the layer and resets any previously held data.
The zarr array is initialized in this method.

	Parameters

	input_shape (TensorShape,tuple, list) – Shape of the input.

	
state_count

	The total number of observed states, including repeats.

	
state_ids()

	Identity of observed states

This method returns a list of byte arrays. Each byte array corresponds
to a unique observed state, where each bit in the byte array corresponds
to a neuron. The list returned by this method matches the list returned
by counts, so that the value in state_ids at position i is
associated with the counts value at position i.

For example, if the StateCapture layer is attached to a convolutional
layer with 8 neurons, then each item in the list will be a byte array of
length 1. If one of the bytes is \x00 (a null byte), then the state
has no firing neurons.

NOTE: Only observed states are contained in the list.

	Returns

	Unique states observed by the layer

	Return type

	[list of Bytes]

	
states

	Decompressed state data

	
class StateCapture(name, disk_path=None, **kwargs)

	Bases: TensorState.Layers.AbstractStateCapture

Tensorflow keras layer to capture states in keras models

This class is designed to be used in a Tensorflow keras model to
automate the capturing of neurons states as data is passed through the
network.

	
build(input_shape)

	Build the StateCapture Keras Layer

This method initializes the layer and resets any previously held
data. The zarr array is initialized in this method.

	Parameters

	input_shape (TensorShape) – Either a TensorShape or list of
TensorShape instances.

	
call(inputs)

	

	
class StateCaptureHook(name, disk_path=None, **kwargs)

	Bases: TensorState.Layers.AbstractStateCapture

StateCapture hook for PyTorch

This class implements all methods in AbstractStateCapture, but is
designed to be a pre or post hook for a layer.

tensorstate.States

The States module contains functions that operate on state space.

	
compress_states(states)

	Compress a state space tensors

This function quantizes neurons into firing (>0) or non-firing (<=0), then
compresses the bits into uint8 values. Thus, if a layer has 8 neurons in it,
then the output is a raw byte ranging in value from 0-255. This compresses
the statespace by 32x relative to holding values as floats, or by 8x
relative to holding values as boolean. This is an important consideration
since state space is large and grows exponentially with the number of
neurons in the layer.

	Parameters

	states ([numpy.ndarray]) – A 2d array of neuron outputs as numpy.float32
or np.bool_ values, where columns are a particular neuron’s value,
and rows are states.

	Returns

	
	A 2d array of uint8 values, where each value is the

	compressed representation of the state.

	Return type

	numpy.ndarray

	
decompress_states(states, num_neurons)

	Decompress states to numpy array of booleans

This functions takes a 2d numpy array of compressed neuron states and
returns a boolean array of states, where each column of values represents
the state of an individual neuron (firing=True, non-firing=False).

For example, take a neuron layer with 5 neurons. The compressed state will
be represented by a single byte, and if all but the first neuron is firing
then the bits will be set as follows:

'00011110'

To decompress this, the number of neurons needs to be input to know how many
of the bits are actual neuron representations. When this state is
decompressed, the numpy array will be:

[False, True, True, True, True]

	Parameters

	
	states ([numpy.ndarray]) – A 2d array of compressed states.
See compress_states function.

	num_neurons ([int]) – The number of neurons in the layer.

	Returns

	Boolean numpy array of neuron states

	Return type

	decompressed_states ([np.ndarray])

	
sort_states(states, state_count)

	Sort the states to place identical states next to each other

This function sorts the states stored in a 2d numpy.ndarray so that
identical states are placed next to each other. To increase speed, the
states are not actually sorted since moving data around in memory can be
time consuming, and usually not useful. What is returned is a sorted index
and the location of unique states in the sorted index.

	Parameters

	
	states ([numpy.ndarray]) – A 2d array of compressed states.
See compress_states function.

	state_count ([int]) – The number of states (or number of rows to sort).

	Returns

	Bin edges, or locations of unique states
index ([np.ndarray]): Sorted index. This output can be used to actually

sort the input states by doing states[index]

	Return type

	edges ([np.ndarray])

What is state space?

An Abstract Explanation

Traditionally, the fundamental unit of computation in the human nervous system
has been the neuron. Some of the early thought in how the brain processes
information suggested that particular neurons encode particular information,
which may be called features in the data science community. Thus, if we have
~86 billion neurons, then we can roughly learn 86 billion features. However, as
human intelligence progressed it was quickly discovered that even simple tasks
often recruit multiple, seemingly unrelated areas of the brain. This led to the
idea that the meaning of an individual neuron may not matter as much as how
neurons fire as a collective, suggesting the number of neurons are an exponent
rather than a coefficient to a human’s capacity to learn new tasks.

Recent research into artificial neural networks and how they function approach
the subject in the antiquated approach to understanding human neurons, where
each neuron encodes a particular feature or function. The idea of state space
diverges and challenges this conception of neurons, and attempts to show how
neurons in artificial neural networks operate in parallel rather than discrete
units in the same way that the human brain operates. In this conception of a
neuron layer, the features are encoded in the state of firing neurons rather
than individual neurons. Thus, in the current conception of neural networks, a
layer with 16 neurons would encode 16 features, but in the state space up to
2^16 features can be encoded (assuming neurons are either firing or not firing).

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 TensorState	

 	
 	
 TensorState.Layers	

 	
 	
 TensorState.States	

 	
 	
 TensorState.TensorState	

Index

 A
 | B
 | C
 | D
 | E
 | M
 | N
 | R
 | S
 | T

A

 	
 	AbstractStateCapture (class in TensorState.Layers)

 	
 	aIQ() (in module TensorState.TensorState)

B

 	
 	build() (StateCapture method)

 	
 	build_efficiency_model() (in module TensorState.TensorState)

C

 	
 	call() (StateCapture method)

 	
 	compress_states() (in module TensorState.States)

 	counts() (AbstractStateCapture method)

D

 	
 	decompress_states() (in module TensorState.States)

E

 	
 	efficiency() (AbstractStateCapture method)

 	
 	entropy() (AbstractStateCapture method)

 	(in module TensorState.TensorState)

M

 	
 	max_entropy() (AbstractStateCapture method)

N

 	
 	network_efficiency() (in module TensorState.TensorState)

R

 	
 	raw_states (AbstractStateCapture attribute)

 	
 	reset_efficiency_model() (in module TensorState.TensorState)

 	reset_states() (AbstractStateCapture method)

S

 	
 	sort_states() (in module TensorState.States)

 	state_count (AbstractStateCapture attribute)

 	state_ids() (AbstractStateCapture method)

 	
 	StateCapture (class in TensorState.Layers)

 	StateCaptureHook (class in TensorState.Layers)

 	states (AbstractStateCapture attribute)

T

 	
 	TensorState.Layers (module)

 	
 	TensorState.States (module)

 	TensorState.TensorState (module)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 TensorState’s Documentation

 		
 Installation

 		
 Introduction

 		
 Simple Installation

 		
 Troubleshooting

 		
 Install From Source

 		
 Other Information

 		
 List of Tutorials

 		
 A Simple Tensorflow Tutorial

 		
 Introduction

 		
 Build and Train LeNet-5

 		
 Use TensorState to Evaluate LeNet-5

 		
 Complete Example

 		
 A Simple PyTorch Tutorial

 		
 Introduction

 		
 Build and Train LeNet-5

 		
 Use TensorState to Evaluate LeNet-5

 		
 Complete Example

 		
 Reference

 		
 tensorstate.TensorState

 		
 tensorstate.Layers

 		
 tensorstate.States

 		
 What is state space?

 		
 An Abstract Explanation

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

