
TensorState
Release 0.0.1-a1

Oct 28, 2020

Contents

1 Introduction 1
1.1 Table of Contents . 1

Python Module Index 23

Index 25

i

ii

CHAPTER 1

Introduction

TensorState is a toolbox designed to analyze the way neural networks process information to calculate metrics about
the network architecture.

Both Tensorflow and PyTorch are supported, but complex networks may prove problematic for some of the network
functions (such as automatically building an efficiency model). Let us know if you run into problems.

Please send comments, suggestions, and feedback to nicholas.j.schaub@gmail.com.

1.1 Table of Contents

1.1.1 Installation

Introduction

TensorState uses accelerated Cython code to capture neural layer state information. This can create some issues when
trying to install on architectures do not include prepackaged wheels. Please read the appropriate section carefully to
make sure installation of the package is successful.

Most dependencies should be installed when using pip, however some may not be installed. Please contact me if
there are any installation errors so I can fix it.

Windows and Python >= 3.6

Precompiled wheels exist for Windows 10 and versions of Python from 3.6 to 3.8. No special dependencies are
required.

pip install TensorState

1

mailto:nicholas.j.schaub@gmail.com

TensorState, Release 0.0.1-a1

Linux

For Linux, there are manylinux wheels that should support most versions of Linux (pip install
TensorState). In some cases it may try to compile from source (e.g. Alpine linux). When compiling, it is
necessary to install numpy and Cython prior to installation.

pip install numpy==1.19.2 Cython==3.0a1

pip install TensorState

Mac OSX

There are currently no OSX wheels, so compilation from source is necessary following the instructions in the Linux
section.

Troubleshooting

Currently, there is no fallback for working on platforms that do not have a C++ compiler or are working on platforms
other than x86 architectures such as ARM. If there is interest, please contact me.

The TensorState package is a work in progress, but the following tutorials demonstrate the current useful func-
tionality of the package.

1.1.2 List of Tutorials

A Simple Tensorflow Tutorial

Table of Contents

• Introduction

• Build and Train LeNet-5

– Get MNIST

– Create a LeNet-5 Model

– Train the LeNet-5 Model

• Use TensorState to Evaluate LeNet-5

• Complete Example

Introduction

The core ideas behind this package were originally described in our paper, Assessing Intelligence in Artificial Neural
Networks.

This package simplifies the capture of neural layers states, and provides some utility functions to assist in analyzing
the state space of neural layers.

In this tutorial, we are going to build a classic convolutional neural network, LeNet-5. Then we are going to use
TensorState to evaluate the network architecture, getting the efficiency of each layer and calculating the artificial
intelligence quotient.

2 Chapter 1. Introduction

mailto:nicholas.j.schaub@gmail.com
https://arxiv.org/abs/2006.02909
https://arxiv.org/abs/2006.02909

TensorState, Release 0.0.1-a1

Build and Train LeNet-5

Get MNIST

To train this model, we need to get the MNIST data set. Fortunately, it comes packaged with Keras in Tensorflow. The
original data was 8-bit and a single channel, so we need to add a channel axis and we are going to normalize the image
to have pixel values ranging from 0-1.

import os

Set the log level to hide some basic warning/info generated by Tensorflow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

Fix for cudnn error on RTX gpus
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

import tensorflow.keras as keras

Load the data
mnist = keras.datasets.mnist
(train_images,train_labels), (test_images,test_labels) = mnist.load_data()

Normalize the data
train_images = train_images/255
test_images = test_images/255

Add a channel axis
train_images = train_images[..., tf.newaxis]
test_images = test_images[..., tf.newaxis]

Create a LeNet-5 Model

The general structure of our LeNet-5 model will roughly follow the structure of the original network described by
LeCun et al. However, we are going to make a few modifications to make it more modern relative to the original
architecture, such as addition of l2 weight regularization, exponential linear units, and batch normalization. So, we
start off by setting the Tensorflow random seed (to make the results reproducible) and set up the parameters of the
convolutional layers.

import tensorflow as tf

Set the random seed for reproducibility
tf.random.set_seed(0)

Set the convolutional layer settings
reg = keras.regularizers.l2(0.0005)
kwargs = {'activation': 'elu',

'kernel_initializer': 'he_normal',
'kernel_regularizer': reg,
'bias_regularizer': reg}

Next, we create the layers of the network. LeNet-5 has 2 convolutional layers and 2 fully connected layers. We will
use max pooling layers after each convolutional layer, and we will add a batch normalization layer to all by the last
fully connected layer.

1.1. Table of Contents 3

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

TensorState, Release 0.0.1-a1

Build the layers
input_layer = keras.layers.Input(shape=(28,28,1), name='input')

Unit 1
conv_1 = keras.layers.Conv2D(20, 5, name='conv_1',**kwargs)(input_layer)
norm_1 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_1)
maxp_1 = keras.layers.MaxPool2D((2,2), name='maxp_1')(norm_1)

Unit 2
conv_2 = keras.layers.Conv2D(50, 5, name='conv_2', **kwargs)(maxp_1)
norm_2 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_2)
maxp_2 = keras.layers.MaxPool2D((2,2), name='maxp_2')(norm_2)

Fully Connected
conv_3 = keras.layers.Conv2D(100, 4, name='conv_3', **kwargs)(maxp_2)
norm_3 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_3)

Prediction
flatten = keras.layers.Flatten(name='flatten')(norm_3)
pred = keras.layers.Dense(10,name='pred')(flatten)

Create the Keras model
model = keras.Model(

inputs=input_layer,
outputs=pred
)

Train the LeNet-5 Model

Next we train the LeNet-5 model, and stopping as soon as the validation accuracy stops increasing.

Compile for training
model.compile(

optimizer=keras.optimizers.SGD(learning_rate=0.001,momentum=0.9,
→˓nesterov=True),

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True,
→˓name='loss'),

metrics=['accuracy']
)

Stop the model once the validation accuracy stops going down
earlystop_callback = tf.keras.callbacks.EarlyStopping(

monitor='val_accuracy',
mode='max',
patience=5,
restore_best_weights=True

)

Train the model
model.fit(

train_images, train_labels, epochs=200,
validation_data=(test_images, test_labels),
batch_size=200,
callbacks=[earlystop_callback],
verbose=1

)

4 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

Use TensorState to Evaluate LeNet-5

To calculate neural layer efficiency, we need to capture the various states each layer takes on as the network processes
data. This functionality is built into the StateCapture class, which is a Tensorflow layer that can be inserted into
the model to automate the capturing of information passing through the network. The StateCapture layer acts like
a probe that can be placed anywhere in the network: it records the information without modifying it, and passes it on
to subsequent layers.

While StateCapture layers can be placed manually, there is a convenience function that can take an existing neural
network and return a new network with StateCapture layers inserted at the designated areas. For example, we can
attach a StateCapture layer to all convolutional layers.

import TensorState as ts
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2D'],method='after
→˓')

In the above code, we feed the trained LeNet-5 model into the function, designate we want to attach StateCapture
layers to all 2D convolutional layers, and we want to capture the states after the layer. We could also cap-
ture the inputs going into and out of the layer by using method='both'. For more information on the
build_efficiency_model method and additional settings, please see the TensorState reference.

Now that the efficiency_model has been created, the StateCapture layers will collect all states of the net-
work as images are fed to the network. Thus, to generate all possible states the network contains for the test data, we
only need to predict the classes for the test data. Then we can look at how many states were collected for each
layer.

predictions = efficiency_model.predict(train_images,batch_size=200)

for layer in efficiency_model.efficiency_layers:
print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Note how efficiency_model has the efficiency layers stored in the efficiency_layers attribute of the
model. The output of the above code should look something like this:

Layer conv_1_states number of states: 5760000
Layer conv_2_states number of states: 640000
Layer conv_3_states number of states: 10000

Since there are 10,000 images in the training data set, it is expected that the fully connected layer (conv_3_states)
has 10,000 states recorded, since exactly one state will be recorded per image. The other layers are convolutional,
generating multiple states per image. The number of states can be checked by determining the number of locations
the convolutional operator is applied per image then multiplying by 10,000. For example, in a 28x28 image with
a 5x5 convolutional operation performed on it, the dimensions of the output would be 24x24. Thus, the number of
states for all 10,000 images would be 24*24*10,000=5,760,000 states, which is the number of states observed by
conv_1_states.

Note: The state_count is the raw number of states observed, and there are likely states that occur multiple times.

Now that the states of each layer have been captured, let’s analyze the state space using the efficiency metric originally
described by Schaub et al. The efficiency metric calculates the entropy of the state space and divides by the number
of neurons in the layer, giving an efficiency value in the range 0.00-1.00.

for layer in efficiency_model.efficiency_layers:
layer_efficiency = layer.efficiency()
print('Layer {} efficiency: {:.1f}%'.format(layer.name,100*layer_efficiency))

1.1. Table of Contents 5

https://arxiv.org/abs/2006.02909

TensorState, Release 0.0.1-a1

Next, we can calculate the artificial intelligence quotient (aIQ). Since things like neural network efficiency and aIQ
are metrics calculated over the entire network, the StateCapture layer does not have built-in methods to calculate
these values.

beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.argmax(predictions,axis=1)==train_labels)/train_labels.size
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy,beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

Complete Example

import os

Set the log level to hide some basic warning/info generated by Tensorflow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

Fix for cudnn error on RTX gpus
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'

import tensorflow as tf
import tensorflow.keras as keras
import TensorState as ts
import numpy as np
import time

""" Load MNIST and transform it """
Load the data
mnist = keras.datasets.mnist
(train_images,train_labels), (test_images,test_labels) = mnist.load_data()

Normalize the data
train_images = train_images/255
test_images = test_images/255

Add a channel axis
train_images = train_images[..., tf.newaxis]
test_images = test_images[..., tf.newaxis]

""" Create a LeNet-5 model """
Set the random seed for reproducibility
tf.random.set_seed(0)

Set the convolutional layer settings
reg = keras.regularizers.l2(0.0005)
kwargs = {'activation': 'elu',

'kernel_initializer': 'he_normal',
(continues on next page)

6 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

(continued from previous page)

'kernel_regularizer': reg,
'bias_regularizer': reg}

Build the layers
input_layer = keras.layers.Input(shape=(28,28,1), name='input')

Unit 1
conv_1 = keras.layers.Conv2D(20, 5, name='conv_1',**kwargs)(input_layer)
norm_1 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_1)
maxp_1 = keras.layers.MaxPool2D((2,2), name='maxp_1')(norm_1)

Unit 2
conv_2 = keras.layers.Conv2D(50, 5, name='conv_2', **kwargs)(maxp_1)
norm_2 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_2)
maxp_2 = keras.layers.MaxPool2D((2,2), name='maxp_2')(norm_2)

Fully Connected
conv_3 = keras.layers.Conv2D(100, 4, name='conv_3', **kwargs)(maxp_2)
norm_3 = keras.layers.BatchNormalization(epsilon=0.00001,momentum=0.9)(conv_3)

Prediction
flatten = keras.layers.Flatten(name='flatten')(norm_3)
pred = keras.layers.Dense(10,name='pred')(flatten)

Create the Keras model
model = keras.Model(

inputs=input_layer,
outputs=pred

)

print(model.summary())

""" Train the model """
Compile for training
model.compile(

optimizer=keras.optimizers.SGD(learning_rate=0.001,momentum=0.9,
→˓nesterov=True),

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True,name=
→˓'loss'),

metrics=['accuracy']
)

Stop the model once the validation accuracy stops going down
earlystop_callback = tf.keras.callbacks.EarlyStopping(

monitor='val_accuracy',
mode='max',
patience=5,
restore_best_weights=True

)

Train the model
model.fit(

train_images, train_labels, epochs=200,
validation_data=(test_images, test_labels),
batch_size=200,
callbacks=[earlystop_callback],
verbose=1

(continues on next page)

1.1. Table of Contents 7

TensorState, Release 0.0.1-a1

(continued from previous page)

)

""" Evaluate model efficiency """
Attach StateCapture layers to the model
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2D'],method='after
→˓')

Collect the states for each layer
print()
print('Running model predictions to capture states...')
start = time.time()
predictions = efficiency_model.predict(test_images,batch_size=200)
print('Finished in {:.3f}s!'.format(time.time() - start))

Count the number of states in each layer
print()
print('Getting the number of states in each layer...')
for layer in efficiency_model.efficiency_layers:

print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Calculate each layers efficiency
print()
print('Evaluating efficiency of each layer...')
for layer in efficiency_model.efficiency_layers:

start = time.time()
print('Layer {} efficiency: {:.1f}% ({:.3f}s)'.format(layer.name,100*layer.

→˓efficiency(),time.time() - start))

Calculate the aIQ
beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.argmax(predictions,axis=1)==test_labels)/test_labels.size
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy,beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

A Simple PyTorch Tutorial

Table of Contents

• Introduction

• Build and Train LeNet-5

– Get MNIST

– Create a LeNet-5 Model

8 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

– Train the LeNet-5 Model

• Use TensorState to Evaluate LeNet-5

• Complete Example

Introduction

The core ideas behind this package were originally described in our paper, Assessing Intelligence in Artificial Neural
Networks.

This package simplifies the capture of neural layers states, and provides some utility functions to assist in analyzing
the state space of neural layers.

In this tutorial, we are going to build a classic convolutional neural network, LeNet-5. Then we are going to use
TensorState to evaluate the network architecture, getting the efficiency of each layer and calculating the artificial
intelligence quotient.

Build and Train LeNet-5

Get MNIST

To train this model, we need to get the MNIST data set. The data comes already rescaled to floats ranging between
0-1, so no rescaling is required.

from pathlib import Path
import requests, pickle, gzip
import torch
from torch.utils.data import TensorDataset, DataLoader

Set up the directories
DATA_PATH = Path("data")
PATH = DATA_PATH/"mnist"
PATH.mkdir(parents=True, exist_ok=True)

Download the data if it doesn't exist
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():

content = requests.get(URL + FILENAME).content
(PATH / FILENAME).open("wb").write(content)

Load the data
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:

((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

x_train, y_train, x_valid, y_valid = map(
torch.tensor, (x_train, y_train, x_valid, y_valid)

)

train_ds = TensorDataset(x_train,y_train)
train_dl = DataLoader(train_ds,batch_size=200,shuffle=True)
valid_ds = TensorDataset(x_valid,y_valid)
valid_dl = DataLoader(valid_ds,batch_size=200)

1.1. Table of Contents 9

https://arxiv.org/abs/2006.02909
https://arxiv.org/abs/2006.02909

TensorState, Release 0.0.1-a1

Create a LeNet-5 Model

The general structure of our LeNet-5 model will roughly follow the structure of the original network described by
LeCun et al. However, we are going to make a few modifications to make it more modern relative to the original
architecture, such as addition of l2 weight regularization, exponential linear units, and batch normalization. So, we
start off by setting the Tensorflow random seed (to make the results reproducible). Then we build the LeNet-5 class to
define out network.

LeNet-5 has 2 convolutional layers and 2 fully connected layers. We will use max pooling layers after each convolu-
tional layer, and we will add a batch normalization layer to all by the last fully connected layer.

import torch.nn as nn

Set the random seed for reproducibility
torch.manual_seed(0)

Build the layers
class LeNet5(nn.Module):

def __init__(self):
super().__init__()

Unit 1
self.conv_1 = nn.Conv2d(1, 20, kernel_size=5, stride=1)
torch.nn.init.kaiming_normal_(self.conv_1.weight)
torch.nn.init.zeros_(self.conv_1.bias)
self.elu_1 = nn.ELU()
self.norm_1 = nn.BatchNorm2d(20,eps=0.00001,momentum=0.9)
self.maxp_1 = nn.MaxPool2d(2,stride=2)

Unit 2
self.conv_2 = nn.Conv2d(20, 50, kernel_size=5, stride=1)
torch.nn.init.kaiming_normal_(self.conv_2.weight)
torch.nn.init.zeros_(self.conv_2.bias)
self.elu_2 = nn.ELU()
self.norm_2 = nn.BatchNorm2d(50,eps=0.00001,momentum=0.9)
self.maxp_2= nn.MaxPool2d(2,stride=2)

Fully Connected
self.conv_3 = nn.Conv2d(50, 100, kernel_size=4, stride=1)
torch.nn.init.kaiming_normal_(self.conv_3.weight)
torch.nn.init.zeros_(self.conv_3.bias)
self.elu_3 = nn.ELU()
self.norm_3 = nn.BatchNorm2d(100,eps=0.00001,momentum=0.9)

Prediction
self.flatten = nn.Flatten()
self.pred = nn.Linear(100,10)
torch.nn.init.kaiming_normal_(self.pred.weight)
torch.nn.init.zeros_(self.pred.bias)

def forward(self,data):
x = data.view(-1, 1, 28, 28)
x = self.conv_1(x)
x = self.maxp_1(self.norm_1(self.elu_1(x)))
x = self.conv_2(x)
x = self.maxp_2(self.norm_2(self.elu_2(x)))

(continues on next page)

10 Chapter 1. Introduction

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

TensorState, Release 0.0.1-a1

(continued from previous page)

x = self.conv_3(x)
x = self.norm_3(self.elu_3(x))
x = self.pred(self.flatten(x))
return x.view(-1, x.size(1))

Set the device to run the model on (gpu if available, cpu otherwise)
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

Create the Keras model
model = LeNet5().to(dev)

Train the LeNet-5 Model

First, set up the parameters used for training. This will be set up to run with early stopping, similar to how Tensorflow
has an early stopping callback. The patience parameter determines how many epochs to let past after the highest
accuracy value is observed.

import torch.optim as optim

num_epochs = 200
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.001,momentum=0.9,

weight_decay=0.0005,nesterov=True)
last_valid_accuracy = 0
val_count = 0
patience = 5

Next, create the function to process training and evaluation for all samples.

def epoch_func(x,y,train=False):
predictions = model(x)
num = len(x)
accuracy = (torch.argmax(predictions,axis=1)==y).float().sum()/num
loss = loss_func(predictions,y)

if train:
loss.backward()
optimizer.step()
optimizer.zero_grad()

return loss,accuracy,num

Finally, run the training and evaluation loop.

import time

for epoch in range(num_epochs):
start = time.time()
model.train()
losses, accuracies, nums = zip(

*[epoch_func(xb.to(dev), yb.to(dev), True) for xb, yb in train_dl]
)
train_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
train_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

(continues on next page)

1.1. Table of Contents 11

TensorState, Release 0.0.1-a1

(continued from previous page)

model.eval()
with torch.no_grad():

losses, accuracies, nums = zip(

*[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)

valid_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
valid_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

print('Epoch {}/{} ({:.2f}s): TrainLoss={:.4f}, TrainAccuracy={:.2f}%, ValidLoss=
→˓{:.4f}, ValidAccuracy={:.2f}%'.format(

str(epoch+1).zfill(3),num_epochs,time.time()-start,
train_loss,100*train_accuracy,valid_loss,100*valid_accuracy

))

Early stopping criteria
if valid_accuracy > last_valid_accuracy:

val_count = 0
last_valid_accuracy = valid_accuracy

else:
val_count += 1

if val_count >= patience:
break

Use TensorState to Evaluate LeNet-5

To calculate neural layer efficiency, we need to capture the various states each layer takes on as the network pro-
cesses data. This functionality is built into the StateCaptureHook class, which is a hook that can be called
before or after the designated layers to automate the capturing of information passing through the network. The
StateCaptureHook acts like a probe that can be placed anywhere in the network: it records the information
without modifying it, and passes it on to subsequent layers.

While StateCaptureHook’s can be placed manually, there is a convenience function that automatically adds hooks
at the designated layers. For example, we can attach a StateCaptureHook to all convolutional layers.

import TensorState as ts
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2d'],method='after
→˓')

In the above code, we feed the trained LeNet-5 model into the function, designate we want to attach
StateCaptureHook’s to all 2D convolutional layers, and we want to capture the states after the layer. We
could also capture the inputs going into and out of the layer by using method='both'. For more information on
the build_efficiency_model method and additional settings, please see the TensorState reference.

Now that the efficiency_model has been created, the StateCaptureHooks will collect all states of the
network as images are fed to the network. Thus, to generate all possible states the network contains for the test data,
we only need to evaluate the test data. Then we can look at how many states were collected for each layer.

model.eval()
with torch.no_grad():

losses, accuracies, nums = zip(

*[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)

(continues on next page)

12 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

(continued from previous page)

for layer in efficiency_model.efficiency_layers:
print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Note how efficiency_model has the efficiency layers stored in the efficiency_layers attribute of the
model. The output of the above code should look something like this:

Layer conv_1_post_states number of states: 5760000
Layer conv_2_post_states number of states: 640000
Layer conv_3_post_states number of states: 10000

Since there are 10,000 images in the training data set, it is expected that the fully connected layer
(conv_3_post_states) has 10,000 states recorded, since exactly one state will be recorded per image. The other
layers are convolutional, generating multiple states per image. The number of states can be checked by determining
the number of locations the convolutional operator is applied per image then multiplying by 10,000. For example, in a
28x28 image with a 5x5 convolutional operation performed on it, the dimensions of the output would be 24x24. Thus,
the number of states for all 10,000 images would be 24*24*10,000=5,760,000 states, which is the number of states
observed by conv_1_post_states.

Note: The state_count is the raw number of states observed, and there are likely states that occur multiple times.

Now that the states of each layer have been captured, let’s analyze the state space using the efficiency metric originally
described by Schaub et al. The efficiency metric calculates the entropy of the state space and divides by the number
of neurons in the layer, giving an efficiency value in the range 0.00-1.00.

for layer in efficiency_model.efficiency_layers:
layer_efficiency = layer.efficiency()
print('Layer {} efficiency: {:.1f}%'.format(layer.name,100*layer_efficiency))

Next, we can calculate the artificial intelligence quotient (aIQ). Since things like neural network efficiency and aIQ
are metrics calculated over the entire network, the StateCaptureHook’s do not have built-in methods to calculate
these values.

beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy.cpu().item(),beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

Complete Example

import requests, pickle, gzip, time

from pathlib import Path

(continues on next page)

1.1. Table of Contents 13

https://arxiv.org/abs/2006.02909

TensorState, Release 0.0.1-a1

(continued from previous page)

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
import numpy as np

import TensorState as ts

Set the device to run the model on (gpu if available, cpu otherwise)
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

""" Load MNIST and transform it """
Set up the directories
DATA_PATH = Path("data")
PATH = DATA_PATH/"mnist"
PATH.mkdir(parents=True, exist_ok=True)

Download the data if it doesn't exist
URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"
if not (PATH / FILENAME).exists():

content = requests.get(URL + FILENAME).content
(PATH / FILENAME).open("wb").write(content)

Load the data
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:

((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

x_train, y_train, x_valid, y_valid = map(
torch.tensor, (x_train, y_train, x_valid, y_valid)

)

train_ds = TensorDataset(x_train,y_train)
train_dl = DataLoader(train_ds,batch_size=200,shuffle=True)
valid_ds = TensorDataset(x_valid,y_valid)
valid_dl = DataLoader(valid_ds,batch_size=200)

""" Create a LeNet-5 model """
Set the random seed for reproducibility
torch.manual_seed(0)

Build the layers
class LeNet5(nn.Module):

def __init__(self):
super().__init__()

Unit 1
self.conv_1 = nn.Conv2d(1, 20, kernel_size=5, stride=1)
torch.nn.init.kaiming_normal_(self.conv_1.weight)
torch.nn.init.zeros_(self.conv_1.bias)
self.elu_1 = nn.ELU()
self.norm_1 = nn.BatchNorm2d(20,eps=0.00001,momentum=0.9)
self.maxp_1 = nn.MaxPool2d(2,stride=2)

Unit 2
self.conv_2 = nn.Conv2d(20, 50, kernel_size=5, stride=1)

(continues on next page)

14 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

(continued from previous page)

torch.nn.init.kaiming_normal_(self.conv_2.weight)
torch.nn.init.zeros_(self.conv_2.bias)
self.elu_2 = nn.ELU()
self.norm_2 = nn.BatchNorm2d(50,eps=0.00001,momentum=0.9)
self.maxp_2= nn.MaxPool2d(2,stride=2)

Fully Connected
self.conv_3 = nn.Conv2d(50, 100, kernel_size=4, stride=1)
torch.nn.init.kaiming_normal_(self.conv_3.weight)
torch.nn.init.zeros_(self.conv_3.bias)
self.elu_3 = nn.ELU()
self.norm_3 = nn.BatchNorm2d(100,eps=0.00001,momentum=0.9)

Prediction
self.flatten = nn.Flatten()
self.pred = nn.Linear(100,10)
torch.nn.init.kaiming_normal_(self.pred.weight)
torch.nn.init.zeros_(self.pred.bias)

def forward(self,data):
x = data.view(-1, 1, 28, 28)
x = self.conv_1(x)
x = self.maxp_1(self.norm_1(self.elu_1(x)))
x = self.conv_2(x)
x = self.maxp_2(self.norm_2(self.elu_2(x)))
x = self.conv_3(x)
x = self.norm_3(self.elu_3(x))
x = self.pred(self.flatten(x))
return x.view(-1, x.size(1))

Create the Keras model
model = LeNet5().to(dev)

""" Train the model """
num_epochs = 200
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.001,momentum=0.9,

weight_decay=0.0005,nesterov=True)
last_valid_accuracy = 0
val_count = 0
patience = 5

def epoch_func(x,y,train=False):
predictions = model(x)
num = len(x)
accuracy = (torch.argmax(predictions,axis=1)==y).float().sum()/num
loss = loss_func(predictions,y)

if train:
loss.backward()
optimizer.step()
optimizer.zero_grad()

return loss,accuracy,num

for epoch in range(num_epochs):
start = time.time()

(continues on next page)

1.1. Table of Contents 15

TensorState, Release 0.0.1-a1

(continued from previous page)

model.train()
losses, accuracies, nums = zip(

*[epoch_func(xb.to(dev), yb.to(dev), True) for xb, yb in train_dl]
)
train_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
train_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

model.eval()
with torch.no_grad():

losses, accuracies, nums = zip(

*[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)

valid_loss = np.sum(np.multiply(losses,nums))/np.sum(nums)
valid_accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)

print('Epoch {}/{} ({:.2f}s): TrainLoss={:.4f}, TrainAccuracy={:.2f}%, ValidLoss=
→˓{:.4f}, ValidAccuracy={:.2f}%'.format(

str(epoch+1).zfill(3),num_epochs,time.time()-start,
train_loss,100*train_accuracy,valid_loss,100*valid_accuracy

))

Early stopping criteria
if valid_accuracy > last_valid_accuracy:

val_count = 0
last_valid_accuracy = valid_accuracy

else:
val_count += 1

if val_count >= patience:
break

""" Evaluate model efficiency """
Attach StateCapture layers to the model
efficiency_model = ts.build_efficiency_model(model,attach_to=['Conv2d'],method='after
→˓')

Collect the states for each layer
print()
print('Running model predictions to capture states...')
start = time.time()
model.eval()
with torch.no_grad():

losses, accuracies, nums = zip(

*[epoch_func(xb.to(dev), yb.to(dev), False) for xb, yb in valid_dl]
)

print('Finished in {:.3f}s!'.format(time.time() - start))

Count the number of states in each layer
print()
print('Getting the number of states in each layer...')
for layer in efficiency_model.efficiency_layers:

print('Layer {} number of states: {}'.format(layer.name,layer.state_count))

Calculate each layers efficiency
print()
print('Evaluating efficiency of each layer...')
for layer in efficiency_model.efficiency_layers:

(continues on next page)

16 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

(continued from previous page)

start = time.time()
print('Layer {} efficiency: {:.1f}% ({:.3f}s)'.format(layer.name,100*layer.

→˓efficiency(),time.time() - start))

Calculate the aIQ
beta = 2 # fudge factor giving a slight bias toward accuracy over efficiency

print()
print('Network metrics...')
print('Beta: {}'.format(beta))

network_efficiency = ts.network_efficiency(efficiency_model)
print('Network efficiency: {:.1f}%'.format(100*network_efficiency))

accuracy = np.sum(np.multiply(accuracies,nums))/np.sum(nums)
print('Network accuracy: {:.1f}%'.format(100*accuracy))

aIQ = ts.aIQ(network_efficiency,accuracy.cpu().item(),beta)
print('aIQ: {:.1f}%'.format(100*aIQ))

1.1.3 Reference

aIQ(net_efficiency, accuracy, weight)
Calculate the artificial intelligence quotient

The artificial intelligence quotient (aIQ) is a simple metric to report a balance of neural network efficiency
and task performance. Although not required, it is assumed that the accuracy argument is a float ranging from
0.0-1.0, with 1.0 meaning more accurate.

aIQ = (net_efficiency * accuracy ** weight) ** (1/(weight+1))

The weight argument is an integer, with higher values giving more weight to the accuracy of the model.

Parameters

• net_efficiency ([float]) – A float ranging from 0.0-1.0

• accuracy ([float]) – A float ranging from 0.0-1.0

• weight ([int]) – An integer with value >=1

Raises ValueError – Raised if weight <= 0

Returns The artificial intelligence quotient

Return type [float]

build_efficiency_model(model, attach_to, exclude=[], method=’after’, storage_path=None)
Attach state capture methods to a neural network

This method takes an existing neural network model and attaches either layers or hooks to the model to capture
the states of neural network layers.

For Tensorflow, only keras.Model networks can serve as inputs to this function. When a Tensorflow model is
fed into this function, a new network is returned where StateCapture layers are inserted into the network at the
designated locations.

For PyTorch, a neural network that implements the Module class will have hooks added to the layers. A new
network is not generated, but for consistency the model is returned from this function.

1.1. Table of Contents 17

TensorState, Release 0.0.1-a1

Parameters

• model ([keras.Model, torch.nn.Module]) – A Keras model

• attach_to (list, optional) – List of strings indicating the types of layers to attach
to. Names of layers can also be specified to attach StateCapture to specific layers

• exclude (list, optional) – List of strings indicating the names of layers to not
attach StateCapture layers to. This will override the attach_to keyword, so that a Conv2D
layer with the name specified by exclude will not have a StateCapture layer attached to it.
Defaults to [].

• method (str, optional) – The location to attach the StateCapture layer to. Must be
one of [‘before’,’after’,’both’]. Defaults to ‘after’.

• storage_path ([str, pathlib.Path], optional) – Path on disk to store
states in zarr format. If None, states are stored in memory. Defaults to None.

Returns A model of the same type as the input model

Return type model

entropy(counts, alpha=1)
Calculate the Renyi entropy

The Renyi entropy is a general definition of entropy that encompasses Shannon’s entropy, Hartley (maximum)
entropy, and min-entropy. It is defined as:

(1-alpha)**-1 * log2(sum(p**alpha))

By default, this method sets alpha=1, which is Shannon’s entropy.

Parameters

• counts (numpy.ndarray) – Array of counts representing number of times a state is
observed.

• alpha ([int,float], optional) – Entropy order. Defaults to 1.

Returns The entropy of the count data.

Return type [float]

network_efficiency(efficiencies)
Calculate the network efficiency

This method calculates the neural network efficiency, defined as the geometric mean of the efficiency values
calculated for the network.

Parameters efficiencies ([list,keras.Model,torch.nn.Module]) – A list of effi-
ciency values (floats) or a keras.Model

Returns The network efficiency

Return type [float]

reset_efficiency_model(model)
Reset all efficiency layers/hooks in a model

This method resets all efficiency layers or hooks in a model, setting the state_count=0. This is useful for
repeated evaluation of a model during a single session.

Parameters model ([keras.Model, torch.nn.Module]) – Model to reset

class AbstractStateCapture(name, disk_path=None, **kwargs)
Bases: abc.ABC

18 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

Base class for capturing state space information in a neural network.

This class implements the infrastructure used to capture, quantize, and process state space information. For
Tensorflow, a subclass is constructed to inherit these methods as a layer to be inserted into the network. For
PyTorch, a subclass is constructed to implement these methods as layer hooks.

This class captures state information and quantizes layer outputs as firing or not firing based on whether the
values are >0 or <=0 respectively. Although this layer is intended to be attached before or after a neural layer,
this can actually be attached to any layer type. After recording the firing state of all neurons, the original input
is returned unaltered. Thus, this layer can be thought of as a “probe”, since it does not add or subtract from the
function of a network.

Layer states are stored in a zarr array, which permits compressed storage of data in memory or on disk. Only
blosc compression is used to ensure fast compression/decompression speeds. By default, data is stored in
memory, but data can be stored on disk to reduce memory consumption by using the disk_path keyword.

NOTE: This layer currently only works within Tensorflow Keras models and PyTorch models.

counts()
Layer state counts

This method returns a numpy.array of integers, where each integer is the number of times a state is ob-
served. The identity of the states can be obtained by calling the state_ids method.

NOTE: The list only contains counts for observed states, so all values will be >0

Returns Counts of stat occurences

Return type [list of int]

efficiency(alpha1=1, alpha2=None)
Calculate the efficiency of the layer

This method returns the efficiency of the layer. Originally, the efficiency was defined as the ratio of
Shannon’s entropy to the theoretical maximum entropy based on the number of neurons in the layer. This
method with no inputs will return that value. However, this method will also now permit defining the alpha
value for the Renyi entropy, so that the efficiency will be calculated as the Renyi entropy of order alpha1
divided by the maximum theoretical entropy.

Parameters

• alpha1 ([float, int], optional) – Order of Renyi entropy in numerator

• alpha2 ([float, int, None], optional) – Order of Renyi entropy in denom-
inator

Returns The efficiency of the layer

Return type [float]

entropy(alpha=1)
Calculate the entropy of the layer

Calculate the entropy from the observed states. The alpha value is the order of entropy calculated using
the formula for Renyi entropy. When alpha=1, this returns Shannon’s entropy.

Parameters alpha (int, None) – Order of entropy to calculate. If None, then use
max_entropy()

Returns The entropy of the layer

Return type [float]

1.1. Table of Contents 19

TensorState, Release 0.0.1-a1

max_entropy()
Theoretical maximum entropy for the layer

The maximum entropy for the layer is equal to the number of neurons in the layer. This is different than
the maximum entropy value that would be returned from the TensorState.entropy method with
alpha=0, which is a count of the observed states.

Returns Theoretical maximum entropy value

Return type [float]

reset_states(input_shape=None)
Initialize the state space

This method initializes the layer and resets any previously held data. The zarr array is initialized in this
method.

Parameters input_shape (TensorShape,tuple, list) – Shape of the input.

state_count
The total number of observed states, including repeats.

state_ids()
Identity of observed states

This method returns a list of byte arrays. Each byte array corresponds to a unique observed state, where
each bit in the byte array corresponds to a neuron. The list returned by this method matches the list returned
by counts, so that the value in state_ids at position i is associated with the counts value at position
i.

For example, if the StateCapture layer is attached to a convolutional layer with 8 neurons, then each item
in the list will be a byte array of length 1. If one of the bytes is \x00 (a null byte), then the state has no
firing neurons.

NOTE: Only observed states are contained in the list.

Returns Unique states observed by the layer

Return type [list of Bytes]

class StateCapture(name, disk_path=None, **kwargs)
Bases: TensorState.Layers.AbstractStateCapture

Tensorflow keras layer to capture states in keras models

This class is designed to be used in a Tensorflow keras model to automate the capturing of neurons states as data
is passed through the network.

build(input_shape)
Build the StateCapture Keras Layer

This method initializes the layer and resets any previously held data. The zarr array is initialized in this
method.

Parameters input_shape (TensorShape) – Either a TensorShape or list of TensorShape
instances.

call(inputs)

class StateCaptureHook(name, disk_path=None, **kwargs)
Bases: TensorState.Layers.AbstractStateCapture

StateCapture hook for PyTorch

This class implements all methods in AbstractStateCapture, but is designed to be a pre or post hook for a layer.

20 Chapter 1. Introduction

TensorState, Release 0.0.1-a1

1.1.4 What is state space?

An Abstract Explanation

Traditionally, the fundamental unit of computation in the human nervous system has been the neuron. Some of the
early thought in how the brain processes information suggested that particular neurons encode particular information,
which may be called features in the data science community. Thus, if we have ~86 billion neurons, then we can roughly
learn 86 billion features. However, as human intelligence progressed it was quickly discovered that even simple tasks
often recruit multiple, seemingly unrelated areas of the brain. This led to the idea that the meaning of an individual
neuron may not matter as much as how neurons fire as a collective, suggesting the number of neurons are an exponent
rather than a coefficient to a human’s capacity to learn new tasks.

Recent research into artificial neural networks and how they function approach the subject in the antiquated approach
to understanding human neurons, where each neuron encodes a particular feature or function. The idea of state space
diverges and challenges this conception of neurons, and attempts to show how neurons in artificial neural networks
operate in parallel rather than discrete units in the same way that the human brain operates. In this conception of a
neuron layer, the features are encoded in the state of firing neurons rather than individual neurons. Thus, in the current
conception of neural networks, a layer with 16 neurons would encode 16 features, but in the state space up to 2^16
features can be encoded (assuming neurons are either firing or not firing).

1.1. Table of Contents 21

TensorState, Release 0.0.1-a1

22 Chapter 1. Introduction

Python Module Index

t
TensorState.Layers, 18
TensorState.TensorState, 17

23

TensorState, Release 0.0.1-a1

24 Python Module Index

Index

A
AbstractStateCapture (class in Ten-

sorState.Layers), 18
aIQ() (in module TensorState.TensorState), 17

B
build() (StateCapture method), 20
build_efficiency_model() (in module Ten-

sorState.TensorState), 17

C
call() (StateCapture method), 20
counts() (AbstractStateCapture method), 19

E
efficiency() (AbstractStateCapture method), 19
entropy() (AbstractStateCapture method), 19
entropy() (in module TensorState.TensorState), 18

M
max_entropy() (AbstractStateCapture method), 19

N
network_efficiency() (in module Ten-

sorState.TensorState), 18

R
reset_efficiency_model() (in module Ten-

sorState.TensorState), 18
reset_states() (AbstractStateCapture method), 20

S
state_count (AbstractStateCapture attribute), 20
state_ids() (AbstractStateCapture method), 20
StateCapture (class in TensorState.Layers), 20
StateCaptureHook (class in TensorState.Layers), 20

T
TensorState.Layers (module), 18
TensorState.TensorState (module), 17

25

	Introduction
	Table of Contents

	Python Module Index
	Index

